Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
H1(x) -> Q1(x)
H1(x) -> P1(x)
G1(s1(x)) -> G1(x)
F1(s1(s1(x))) -> +12(p1(g1(x)), q1(g1(x)))
F1(s1(s1(x))) -> G1(x)
G1(s1(x)) -> P1(g1(x))
F1(s1(s1(x))) -> H1(g1(x))
F1(s1(s1(x))) -> P1(g1(x))
G1(s1(x)) -> H1(g1(x))
G1(s1(x)) -> +12(p1(g1(x)), q1(g1(x)))
F1(s1(s1(x))) -> P1(h1(g1(x)))
F1(s1(s1(x))) -> Q1(g1(x))
H1(x) -> +12(p1(x), q1(x))
G1(s1(x)) -> Q1(g1(x))
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
H1(x) -> Q1(x)
H1(x) -> P1(x)
G1(s1(x)) -> G1(x)
F1(s1(s1(x))) -> +12(p1(g1(x)), q1(g1(x)))
F1(s1(s1(x))) -> G1(x)
G1(s1(x)) -> P1(g1(x))
F1(s1(s1(x))) -> H1(g1(x))
F1(s1(s1(x))) -> P1(g1(x))
G1(s1(x)) -> H1(g1(x))
G1(s1(x)) -> +12(p1(g1(x)), q1(g1(x)))
F1(s1(s1(x))) -> P1(h1(g1(x)))
F1(s1(s1(x))) -> Q1(g1(x))
H1(x) -> +12(p1(x), q1(x))
G1(s1(x)) -> Q1(g1(x))
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 13 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
+12(x, s1(y)) -> +12(x, y)
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
+12(x, s1(y)) -> +12(x, y)
Used argument filtering: +12(x1, x2) = x2
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
G1(s1(x)) -> G1(x)
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
G1(s1(x)) -> G1(x)
Used argument filtering: G1(x1) = x1
s1(x1) = s1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f1(0) -> 0
f1(s1(0)) -> s1(0)
f1(s1(s1(x))) -> p1(h1(g1(x)))
g1(0) -> pair2(s1(0), s1(0))
g1(s1(x)) -> h1(g1(x))
h1(x) -> pair2(+2(p1(x), q1(x)), p1(x))
p1(pair2(x, y)) -> x
q1(pair2(x, y)) -> y
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
f1(s1(s1(x))) -> +2(p1(g1(x)), q1(g1(x)))
g1(s1(x)) -> pair2(+2(p1(g1(x)), q1(g1(x))), p1(g1(x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.